Segal enriched categories and applications
Theory and applications of categories, Tome 35 (2020), pp. 1227-1267
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In this paper we develop a theory of Segal enriched categories. Our motivation was to generalize the notion of up-to-homotopy monoid in a monoidal category, introduced by Leinster. Our formalism generalizes the classical theory of Segal categories and extends the theory of categories enriched over a 2-category. We introduce Segal dg-categories which did not exist so far. We show that the homotopy transfer problem for algebras leads directly to a Leinster-Segal algebra.
Publié le :
Classification :
18D20, 18G30, 18N10, 18N40, 18N45, 18N60
Keywords: Segal categories, enriched categories, homotopy algebras, higher categories
Keywords: Segal categories, enriched categories, homotopy algebras, higher categories
@article{TAC_2020_35_a32,
author = {Hugo V. Bacard},
title = {Segal enriched categories and applications},
journal = {Theory and applications of categories},
pages = {1227--1267},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/}
}
Hugo V. Bacard. Segal enriched categories and applications. Theory and applications of categories, Tome 35 (2020), pp. 1227-1267. http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/