Segal enriched categories and applications
Theory and applications of categories, Tome 35 (2020), pp. 1227-1267.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we develop a theory of Segal enriched categories. Our motivation was to generalize the notion of up-to-homotopy monoid in a monoidal category, introduced by Leinster. Our formalism generalizes the classical theory of Segal categories and extends the theory of categories enriched over a 2-category. We introduce Segal dg-categories which did not exist so far. We show that the homotopy transfer problem for algebras leads directly to a Leinster-Segal algebra.
Publié le :
Classification : 18D20, 18G30, 18N10, 18N40, 18N45, 18N60
Keywords: Segal categories, enriched categories, homotopy algebras, higher categories
@article{TAC_2020_35_a32,
     author = {Hugo V. Bacard},
     title = {Segal enriched categories and applications},
     journal = {Theory and applications of categories},
     pages = {1227--1267},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/}
}
TY  - JOUR
AU  - Hugo V. Bacard
TI  - Segal enriched categories and applications
JO  - Theory and applications of categories
PY  - 2020
SP  - 1227
EP  - 1267
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/
LA  - en
ID  - TAC_2020_35_a32
ER  - 
%0 Journal Article
%A Hugo V. Bacard
%T Segal enriched categories and applications
%J Theory and applications of categories
%D 2020
%P 1227-1267
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/
%G en
%F TAC_2020_35_a32
Hugo V. Bacard. Segal enriched categories and applications. Theory and applications of categories, Tome 35 (2020), pp. 1227-1267. http://geodesic.mathdoc.fr/item/TAC_2020_35_a32/