Cohesive toposes of sheaves on monoids of continuous endofunctions of the unit interval
Theory and applications of categories, Tome 35 (2020), pp. 1087-1100.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We determine the largest submonoid of the monoid of continuous endomorphisms of the unit interval [0,1] on which the finite partitions form the basis of a Grothendieck topology, and thus determine a cohesive topos over sets. We analyze some of the sheaf theoretic aspects of this topos. Furthermore, we adapt the constructions of Menni to include another model of axiomatic cohesion. We conclude the paper with a proof of the fact that a sufficiently cohesive topos of presheaves does not satisfy the continuity axiom.
Classification : 18F60, 18F10
Keywords: TAC, Cohesion, Topos theory
@article{TAC_2020_35_a28,
     author = {Luis Jes\'us Turcio},
     title = {Cohesive toposes of sheaves on monoids of continuous endofunctions of the unit interval},
     journal = {Theory and applications of categories},
     pages = {1087--1100},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a28/}
}
TY  - JOUR
AU  - Luis Jesús Turcio
TI  - Cohesive toposes of sheaves on monoids of continuous endofunctions of the unit interval
JO  - Theory and applications of categories
PY  - 2020
SP  - 1087
EP  - 1100
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a28/
LA  - en
ID  - TAC_2020_35_a28
ER  - 
%0 Journal Article
%A Luis Jesús Turcio
%T Cohesive toposes of sheaves on monoids of continuous endofunctions of the unit interval
%J Theory and applications of categories
%D 2020
%P 1087-1100
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a28/
%G en
%F TAC_2020_35_a28
Luis Jesús Turcio. Cohesive toposes of sheaves on monoids of continuous endofunctions of the unit interval. Theory and applications of categories, Tome 35 (2020), pp. 1087-1100. http://geodesic.mathdoc.fr/item/TAC_2020_35_a28/