Multiple vector bundles: cores, splittings and decompositions
Theory and applications of categories, Tome 35 (2020), pp. 665-699.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper introduces ∞- and n-fold vector bundles as special functors from the ∞- and n-cube categories to the category of smooth manifolds. We study the cores and "n-pullbacks" of n-fold vector bundles and we prove that any n-fold vector bundle admits a non-canonical isomorphism to a decomposed n-fold vector bundle. A colimit argument then shows that ∞-fold vector bundles admit as well non-canonical decompositions. For the convenience of the reader, the case of triple vector bundles is discussed in detail.
Publié le :
Classification : 53C05 (Primary), 18F15, 55R65 (Secondary)
Keywords: n-fold vector bundle atlas, linear decomposition
@article{TAC_2020_35_a18,
     author = {Malte Heuer and Madeleine Jotz Lean},
     title = {Multiple vector bundles: cores, splittings and decompositions},
     journal = {Theory and applications of categories},
     pages = {665--699},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a18/}
}
TY  - JOUR
AU  - Malte Heuer
AU  - Madeleine Jotz Lean
TI  - Multiple vector bundles: cores, splittings and decompositions
JO  - Theory and applications of categories
PY  - 2020
SP  - 665
EP  - 699
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a18/
LA  - en
ID  - TAC_2020_35_a18
ER  - 
%0 Journal Article
%A Malte Heuer
%A Madeleine Jotz Lean
%T Multiple vector bundles: cores, splittings and decompositions
%J Theory and applications of categories
%D 2020
%P 665-699
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a18/
%G en
%F TAC_2020_35_a18
Malte Heuer; Madeleine Jotz Lean. Multiple vector bundles: cores, splittings and decompositions. Theory and applications of categories, Tome 35 (2020), pp. 665-699. http://geodesic.mathdoc.fr/item/TAC_2020_35_a18/