Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Suppose an extension map U: T_1 -> T_0 in the 2-category Con of contexts for arithmetic universes satisfies a Chevalley criterion for being an (op)fibration in Con. If M is a model of T_0 in an elementary topos S with nno, then the classifier p: S[T_1/M] -> S satisfies the representable definition of being an (op)fibration in the 2-category ETop of elementary toposes (with nno) and geometric morphisms.
@article{TAC_2020_35_a15, author = {Sina Hazratpour and Steven Vickers}, title = {Fibrations of {AU-contexts} beget fibrations of toposes}, journal = {Theory and applications of categories}, pages = {562--593}, publisher = {mathdoc}, volume = {35}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/} }
Sina Hazratpour; Steven Vickers. Fibrations of AU-contexts beget fibrations of toposes. Theory and applications of categories, Tome 35 (2020), pp. 562-593. http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/