Fibrations of AU-contexts beget fibrations of toposes
Theory and applications of categories, Tome 35 (2020), pp. 562-593.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Suppose an extension map U: T_1 -> T_0 in the 2-category Con of contexts for arithmetic universes satisfies a Chevalley criterion for being an (op)fibration in Con. If M is a model of T_0 in an elementary topos S with nno, then the classifier p: S[T_1/M] -> S satisfies the representable definition of being an (op)fibration in the 2-category ETop of elementary toposes (with nno) and geometric morphisms.
Publié le :
Classification : 18D30, 03G30, 18F10, 18C30, 18N10.
Keywords: internal fibration, 2-fibration, context, bicategory, elementary topos, Grothendieck topos, arithmetic universe
@article{TAC_2020_35_a15,
     author = {Sina Hazratpour and Steven Vickers},
     title = {Fibrations of {AU-contexts} beget fibrations of toposes},
     journal = {Theory and applications of categories},
     pages = {562--593},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/}
}
TY  - JOUR
AU  - Sina Hazratpour
AU  - Steven Vickers
TI  - Fibrations of AU-contexts beget fibrations of toposes
JO  - Theory and applications of categories
PY  - 2020
SP  - 562
EP  - 593
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/
LA  - en
ID  - TAC_2020_35_a15
ER  - 
%0 Journal Article
%A Sina Hazratpour
%A Steven Vickers
%T Fibrations of AU-contexts beget fibrations of toposes
%J Theory and applications of categories
%D 2020
%P 562-593
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/
%G en
%F TAC_2020_35_a15
Sina Hazratpour; Steven Vickers. Fibrations of AU-contexts beget fibrations of toposes. Theory and applications of categories, Tome 35 (2020), pp. 562-593. http://geodesic.mathdoc.fr/item/TAC_2020_35_a15/