Symmetric monoidal categories and Γ-categories
Theory and applications of categories, Tome 35 (2020), pp. 417-512.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper we construct a symmetric monoidal closed model category of coherently commutative monoidal categories. The main aim of this paper is to establish a Quillen equivalence between a model category of coherently commutative monoidal categories and a natural model category of Permutative (or strict symmetric monoidal) categories, Perm, which is not a symmetric monoidal closed model category. The right adjoint of this Quillen equivalence is the classical Segal's Nerve functor.
Publié le :
Classification : 18M05, 18M60, 18N55, 18F25, 55P42, 19D23
Keywords: Segal's Nerve functor, Theory of Bicycles, Leinster construction
@article{TAC_2020_35_a13,
     author = {Amit Sharma},
     title = {Symmetric monoidal categories and {\ensuremath{\Gamma}-categories}},
     journal = {Theory and applications of categories},
     pages = {417--512},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a13/}
}
TY  - JOUR
AU  - Amit Sharma
TI  - Symmetric monoidal categories and Γ-categories
JO  - Theory and applications of categories
PY  - 2020
SP  - 417
EP  - 512
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a13/
LA  - en
ID  - TAC_2020_35_a13
ER  - 
%0 Journal Article
%A Amit Sharma
%T Symmetric monoidal categories and Γ-categories
%J Theory and applications of categories
%D 2020
%P 417-512
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a13/
%G en
%F TAC_2020_35_a13
Amit Sharma. Symmetric monoidal categories and Γ-categories. Theory and applications of categories, Tome 35 (2020), pp. 417-512. http://geodesic.mathdoc.fr/item/TAC_2020_35_a13/