Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Let PreOrd(C) be the category of internal preorders in an exact category C. We show that the pair (Eq(C),ParOrd(C)) is a pretorsion theory in PreOrd(C), where Eq(C) and ParOrd(C) are the full subcategories of internal equivalence relations and of internal partial orders in C, respectively. We observe that ParOrd(C) is a reflective subcategory of PreOrd(C) such that each component of the unit of the adjunction is a pullback-stable regular epimorphism. The reflector F: PreOrd(C) -> PardOrd(C) turns out to have stable units in the sense of Cassidy, Hébert and Kelly, thus inducing an admissible categorical Galois structure. In particular, when C is the category Set of sets, we show that this reflection induces a monotone-light factorization system (in the sense of Carboni, Janelidze, Kelly and Paré) in PreOrd(Set). A topological interpretation of our results in the category of Alexandroff-discrete spaces is also given, via the well-known isomorphism between this latter category and PreOrd(Set).
@article{TAC_2020_35_a10, author = {Alberto Facchini and Carmelo Finocchiaro and Marino Gran}, title = {A new {Galois} structure in the category of internal preorders}, journal = {Theory and applications of categories}, pages = {326--349}, publisher = {mathdoc}, volume = {35}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a10/} }
TY - JOUR AU - Alberto Facchini AU - Carmelo Finocchiaro AU - Marino Gran TI - A new Galois structure in the category of internal preorders JO - Theory and applications of categories PY - 2020 SP - 326 EP - 349 VL - 35 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2020_35_a10/ LA - en ID - TAC_2020_35_a10 ER -
Alberto Facchini; Carmelo Finocchiaro; Marino Gran. A new Galois structure in the category of internal preorders. Theory and applications of categories, Tome 35 (2020), pp. 326-349. http://geodesic.mathdoc.fr/item/TAC_2020_35_a10/