The dual of compact ordered spaces is a variety
Theory and applications of categories, Tome 34 (2019), pp. 1401-1439.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In a recent paper (2018), D. Hofmann, R. Neves and P. Nora proved that the dual of the category of compact ordered spaces and monotone continuous maps is a quasi-variety -not finitary, but bounded by $\aleph_1$. An open question was: is it also a variety? We show that the answer is affirmative. We describe the variety by means of a set of finitary operations, together with an operation of countably infinite arity, and equational axioms. The dual equivalence is induced by the dualizing object [0,1].
Publié le :
Classification : Primary: 03C05. Secondary: 08A65, 18B30, 18C10, 54A05, 54F05
Keywords: compact ordered space, variety, duality, axiomatizability
@article{TAC_2019_34_a43,
     author = {Marco Abbadini},
     title = {The dual of compact ordered spaces is a variety},
     journal = {Theory and applications of categories},
     pages = {1401--1439},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a43/}
}
TY  - JOUR
AU  - Marco Abbadini
TI  - The dual of compact ordered spaces is a variety
JO  - Theory and applications of categories
PY  - 2019
SP  - 1401
EP  - 1439
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a43/
LA  - en
ID  - TAC_2019_34_a43
ER  - 
%0 Journal Article
%A Marco Abbadini
%T The dual of compact ordered spaces is a variety
%J Theory and applications of categories
%D 2019
%P 1401-1439
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a43/
%G en
%F TAC_2019_34_a43
Marco Abbadini. The dual of compact ordered spaces is a variety. Theory and applications of categories, Tome 34 (2019), pp. 1401-1439. http://geodesic.mathdoc.fr/item/TAC_2019_34_a43/