Adjunction up to automorphism
Theory and applications of categories, Tome 34 (2019), pp. 993-1035.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We say a set-valued functor on a category is nearly representable if it is a quotient of a representable functor by a group of automorphisms. A distributor is a set-valued functor in two arguments, contravariant in one argument and covariant in the other. We say a distributor is slicewise nearly representable if it is nearly representable in either of the arguments whenever the other argument is fixed. We consider such a distributor a weak analogue of adjunction. Under a finiteness assumption on the domain categories, we show that every slicewise nearly representable functor is a composite of two distributors, each of which may be considered as a weak analogue of (co-)reflective adjunction.
Publié le :
Classification : 18A40
Keywords: distributor, adjoint, nearly representable
@article{TAC_2019_34_a30,
     author = {D. Tambara},
     title = {Adjunction up to automorphism},
     journal = {Theory and applications of categories},
     pages = {993--1035},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a30/}
}
TY  - JOUR
AU  - D. Tambara
TI  - Adjunction up to automorphism
JO  - Theory and applications of categories
PY  - 2019
SP  - 993
EP  - 1035
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a30/
LA  - en
ID  - TAC_2019_34_a30
ER  - 
%0 Journal Article
%A D. Tambara
%T Adjunction up to automorphism
%J Theory and applications of categories
%D 2019
%P 993-1035
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a30/
%G en
%F TAC_2019_34_a30
D. Tambara. Adjunction up to automorphism. Theory and applications of categories, Tome 34 (2019), pp. 993-1035. http://geodesic.mathdoc.fr/item/TAC_2019_34_a30/