Monic skeleta, Boundaries, Aufhebung, and the meaning of `one-dimensionality'
Theory and applications of categories, Tome 34 (2019), pp. 714-735.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let E be a topos. If l is a level of E with monic skeleta then it makes sense to consider the objects in E that have l-skeletal boundaries. In particular, if p : E \to S is a pre-cohesive geometric morphism then its centre (that may be called level 0) has monic skeleta. Let level 1 be the Aufhebung of level 0. We show that if level 1 has monic skeleta then the quotients of 0-separated objects with 0-skeletal boundaries are 1-skeletal. We also prove that in several examples (such as the classifier of non-trivial Boolean algebras, simplicial sets and the classifier of strictly bipointed objects) every 1-skeletal object is of that form.
Publié le :
Classification : 18B25, 18F20
Keywords: Topos theory, Axiomatic Cohesion
@article{TAC_2019_34_a24,
     author = {Matias Menni},
     title = {Monic skeleta, {Boundaries,} {Aufhebung,} and the meaning of `one-dimensionality'},
     journal = {Theory and applications of categories},
     pages = {714--735},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a24/}
}
TY  - JOUR
AU  - Matias Menni
TI  - Monic skeleta, Boundaries, Aufhebung, and the meaning of `one-dimensionality'
JO  - Theory and applications of categories
PY  - 2019
SP  - 714
EP  - 735
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a24/
LA  - en
ID  - TAC_2019_34_a24
ER  - 
%0 Journal Article
%A Matias Menni
%T Monic skeleta, Boundaries, Aufhebung, and the meaning of `one-dimensionality'
%J Theory and applications of categories
%D 2019
%P 714-735
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a24/
%G en
%F TAC_2019_34_a24
Matias Menni. Monic skeleta, Boundaries, Aufhebung, and the meaning of `one-dimensionality'. Theory and applications of categories, Tome 34 (2019), pp. 714-735. http://geodesic.mathdoc.fr/item/TAC_2019_34_a24/