Left-invariant vector fields on a Lie 2-group
Theory and applications of categories, Tome 34 (2019), pp. 604-634.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A Lie 2-group G is a category internal to the category of Lie groups. Consequently it is a monoidal category and a Lie groupoid. The Lie groupoid structure on G gives rise to the Lie 2-algebra X(G) of multiplicative vector fields. The monoidal structure on G gives rise to a left action of the 2-group G on the Lie groupoid G, hence to an action of G on the Lie 2-algebra X(G). As a result we get the Lie 2-algebra X(G)^G of left-invariant multiplicative vector fields.On the other hand there is a well-known construction that associates a Lie 2-algebra g to a Lie 2-group G: apply the functor Lie : LieGp -> LieAlg to the structure maps of the category G. We show that the Lie 2-algebra g is isomorphic to the Lie 2-algebra X(G)^G of left invariant multiplicative vector fields.
Publié le :
Classification : 18D05, 22A22, 22E, 17B
Keywords: Lie 2-group, Lie 2-algebra, invariant vector fields, 2 limit
@article{TAC_2019_34_a20,
     author = {Eugene Lerman},
     title = {Left-invariant vector fields on a {Lie} 2-group},
     journal = {Theory and applications of categories},
     pages = {604--634},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a20/}
}
TY  - JOUR
AU  - Eugene Lerman
TI  - Left-invariant vector fields on a Lie 2-group
JO  - Theory and applications of categories
PY  - 2019
SP  - 604
EP  - 634
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a20/
LA  - en
ID  - TAC_2019_34_a20
ER  - 
%0 Journal Article
%A Eugene Lerman
%T Left-invariant vector fields on a Lie 2-group
%J Theory and applications of categories
%D 2019
%P 604-634
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a20/
%G en
%F TAC_2019_34_a20
Eugene Lerman. Left-invariant vector fields on a Lie 2-group. Theory and applications of categories, Tome 34 (2019), pp. 604-634. http://geodesic.mathdoc.fr/item/TAC_2019_34_a20/