Limits in dagger categories
Theory and applications of categories, Tome 34 (2019), pp. 468-513
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases.
Publié le :
Classification :
18A40, 18C15, 18C20, 18D10, 18D15, 18D35
Keywords: Dagger category, limit, adjoint functors
Keywords: Dagger category, limit, adjoint functors
@article{TAC_2019_34_a17,
author = {Chris Heunen and Martti Karvonen},
title = {Limits in dagger categories},
journal = {Theory and applications of categories},
pages = {468--513},
publisher = {mathdoc},
volume = {34},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/}
}
Chris Heunen; Martti Karvonen. Limits in dagger categories. Theory and applications of categories, Tome 34 (2019), pp. 468-513. http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/