Limits in dagger categories
Theory and applications of categories, Tome 34 (2019), pp. 468-513.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We develop a notion of limit for dagger categories, that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases.
Publié le :
Classification : 18A40, 18C15, 18C20, 18D10, 18D15, 18D35
Keywords: Dagger category, limit, adjoint functors
@article{TAC_2019_34_a17,
     author = {Chris Heunen and Martti Karvonen},
     title = {Limits in dagger categories},
     journal = {Theory and applications of categories},
     pages = {468--513},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/}
}
TY  - JOUR
AU  - Chris Heunen
AU  - Martti Karvonen
TI  - Limits in dagger categories
JO  - Theory and applications of categories
PY  - 2019
SP  - 468
EP  - 513
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/
LA  - en
ID  - TAC_2019_34_a17
ER  - 
%0 Journal Article
%A Chris Heunen
%A Martti Karvonen
%T Limits in dagger categories
%J Theory and applications of categories
%D 2019
%P 468-513
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/
%G en
%F TAC_2019_34_a17
Chris Heunen; Martti Karvonen. Limits in dagger categories. Theory and applications of categories, Tome 34 (2019), pp. 468-513. http://geodesic.mathdoc.fr/item/TAC_2019_34_a17/