Colimits of monoids
Theory and applications of categories, Tome 34 (2019), pp. 456-467.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

If C is a monoidal category with reflexive coequalizers which are preserved by tensoring from both sides, then the category MonC of monoids over C has all coequalizers and these are regular epimorphisms in C. This implies that MonC has all colimits which exist in C, provided that C in addition has (regular epi, jointly monomorphic)-factorizations of discrete cones and admits arbitrary free monoids. A further application is a lifting theorem for adjunctions with a monoidal right adjoint whose left adjoint is not necessarily strong to adjunctions between the respective categories of monoids.
Publié le :
Classification : Primary 18D10, Secondary 18A30
Keywords: Monoids in monoidal categories, (reflexive) coequalizers, (regularly) monadic functors, monoidal functors
@article{TAC_2019_34_a16,
     author = {Hans-E. Porst},
     title = {Colimits  of monoids},
     journal = {Theory and applications of categories},
     pages = {456--467},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a16/}
}
TY  - JOUR
AU  - Hans-E. Porst
TI  - Colimits  of monoids
JO  - Theory and applications of categories
PY  - 2019
SP  - 456
EP  - 467
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a16/
LA  - en
ID  - TAC_2019_34_a16
ER  - 
%0 Journal Article
%A Hans-E. Porst
%T Colimits  of monoids
%J Theory and applications of categories
%D 2019
%P 456-467
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a16/
%G en
%F TAC_2019_34_a16
Hans-E. Porst. Colimits  of monoids. Theory and applications of categories, Tome 34 (2019), pp. 456-467. http://geodesic.mathdoc.fr/item/TAC_2019_34_a16/