The operadic nerve, relative nerve and the Grothendieck construction
Theory and applications of categories, Tome 34 (2019), pp. 349-374.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We relate the relative nerve $N_f(D)$ of a diagram of simplicial sets $f : D \to sSet$ with the Grothendieck construction $Gr F$ of a simplicial functor $F : D \to sCat$ in the case where $f = N F$. We further show that any strict monoidal simplicial category $C$ gives rise to a functor $C^\bullet : \Delta^\op \to sCat$, and that the relative nerve of $\N C^\bullet$ is the operadic nerve $\N^\otimes(C)$. Finally, we show that all the above constructions commute with appropriately defined opposite functors.
Publié le :
Classification : 55U40, 55U10, 18D20, 18D30
Keywords: simplicial categories, Grothendieck construction, higher category theory, operads
@article{TAC_2019_34_a12,
     author = {Jonathan Beardsley and Liang Ze Wong},
     title = {The operadic nerve, relative nerve and the {Grothendieck} construction},
     journal = {Theory and applications of categories},
     pages = {349--374},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a12/}
}
TY  - JOUR
AU  - Jonathan Beardsley
AU  - Liang Ze Wong
TI  - The operadic nerve, relative nerve and the Grothendieck construction
JO  - Theory and applications of categories
PY  - 2019
SP  - 349
EP  - 374
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a12/
LA  - en
ID  - TAC_2019_34_a12
ER  - 
%0 Journal Article
%A Jonathan Beardsley
%A Liang Ze Wong
%T The operadic nerve, relative nerve and the Grothendieck construction
%J Theory and applications of categories
%D 2019
%P 349-374
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a12/
%G en
%F TAC_2019_34_a12
Jonathan Beardsley; Liang Ze Wong. The operadic nerve, relative nerve and the Grothendieck construction. Theory and applications of categories, Tome 34 (2019), pp. 349-374. http://geodesic.mathdoc.fr/item/TAC_2019_34_a12/