Involutive categories, colored *-operads and quantum field theory
Theory and applications of categories, Tome 34 (2019), pp. 13-57.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Involutive category theory provides a flexible framework to describe involutive structures on algebraic objects, such as anti-linear involutions on complex vector spaces. Motivated by the prominent role of involutions in quantum (field) theory, we develop the involutive analogs of colored operads and their algebras, named colored *-operads and *-algebras. Central to the definition of colored *-operads is the involutive monoidal category of symmetric sequences, which we obtain from a general product-exponential 2-adjunction whose right adjoint forms involutive functor categories. For *-algebras over *-operads we obtain involutive analogs of the usual change of color and operad adjunctions. As an application, we turn the colored operads for algebraic quantum field theory into colored *-operads. The simplest instance is the associative *-operad, whose *-algebras are unital and associative *-algebras.
Publié le :
Classification : 18Dxx, 81Txx
Keywords: involutive categories, involutive monoidal categories, *-monoids, colored operads, *-algebras, algebraic quantum field theory
@article{TAC_2019_34_a1,
     author = {Marco Benini and Alexander Schenkel and Lukas Woike},
     title = {Involutive categories, colored *-operads and quantum field theory},
     journal = {Theory and applications of categories},
     pages = {13--57},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a1/}
}
TY  - JOUR
AU  - Marco Benini
AU  - Alexander Schenkel
AU  - Lukas Woike
TI  - Involutive categories, colored *-operads and quantum field theory
JO  - Theory and applications of categories
PY  - 2019
SP  - 13
EP  - 57
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a1/
LA  - en
ID  - TAC_2019_34_a1
ER  - 
%0 Journal Article
%A Marco Benini
%A Alexander Schenkel
%A Lukas Woike
%T Involutive categories, colored *-operads and quantum field theory
%J Theory and applications of categories
%D 2019
%P 13-57
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a1/
%G en
%F TAC_2019_34_a1
Marco Benini; Alexander Schenkel; Lukas Woike. Involutive categories, colored *-operads and quantum field theory. Theory and applications of categories, Tome 34 (2019), pp. 13-57. http://geodesic.mathdoc.fr/item/TAC_2019_34_a1/