Regular patterns, substitudes, Feynman categories and operads
Theory and applications of categories, Tome 33 (2018), pp. 148-192.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that the regular patterns of Getzler (2009) form a 2-category biequivalent to the 2-category of substitudes of Day and Street (2003), and that the Feynman categories of Kaufmann and Ward (2013) form a 2-category biequivalent to the 2-category of coloured operads (with invertible 2-cells). These biequivalences induce equivalences between the corresponding categories of algebras. There are three main ingredients in establishing these biequivalences. The first is a strictification theorem (exploiting Power's General Coherence Result) which allows to reduce to the case where the structure maps are identity-on-objects functors and strict monoidal. Second, we subsume the Getzler and Kaufmann-Ward hereditary axioms into the notion of Guitart exactness, a general condition ensuring compatibility between certain left Kan extensions and a given monad, in this case the free-symmetric-monoidal-category monad. Finally we set up a biadjunction between substitudes and what we call pinned symmetric monoidal categories, from which the results follow as a consequence of the fact that the hereditary map is precisely the counit of this biadjunction.
Publié le :
Classification : 18D10, 18D50
Keywords: operads, symmetric monoidal categories
@article{TAC_2018_33_a6,
     author = {Michael Batanin and Joachim Kock and Mark Weber},
     title = {Regular patterns, substitudes, {Feynman} categories and operads},
     journal = {Theory and applications of categories},
     pages = {148--192},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/}
}
TY  - JOUR
AU  - Michael Batanin
AU  - Joachim Kock
AU  - Mark Weber
TI  - Regular patterns, substitudes, Feynman categories and operads
JO  - Theory and applications of categories
PY  - 2018
SP  - 148
EP  - 192
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/
LA  - en
ID  - TAC_2018_33_a6
ER  - 
%0 Journal Article
%A Michael Batanin
%A Joachim Kock
%A Mark Weber
%T Regular patterns, substitudes, Feynman categories and operads
%J Theory and applications of categories
%D 2018
%P 148-192
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/
%G en
%F TAC_2018_33_a6
Michael Batanin; Joachim Kock; Mark Weber. Regular patterns, substitudes, Feynman categories and operads. Theory and applications of categories, Tome 33 (2018), pp. 148-192. http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/