Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that the regular patterns of Getzler (2009) form a 2-category biequivalent to the 2-category of substitudes of Day and Street (2003), and that the Feynman categories of Kaufmann and Ward (2013) form a 2-category biequivalent to the 2-category of coloured operads (with invertible 2-cells). These biequivalences induce equivalences between the corresponding categories of algebras. There are three main ingredients in establishing these biequivalences. The first is a strictification theorem (exploiting Power's General Coherence Result) which allows to reduce to the case where the structure maps are identity-on-objects functors and strict monoidal. Second, we subsume the Getzler and Kaufmann-Ward hereditary axioms into the notion of Guitart exactness, a general condition ensuring compatibility between certain left Kan extensions and a given monad, in this case the free-symmetric-monoidal-category monad. Finally we set up a biadjunction between substitudes and what we call pinned symmetric monoidal categories, from which the results follow as a consequence of the fact that the hereditary map is precisely the counit of this biadjunction.
@article{TAC_2018_33_a6, author = {Michael Batanin and Joachim Kock and Mark Weber}, title = {Regular patterns, substitudes, {Feynman} categories and operads}, journal = {Theory and applications of categories}, pages = {148--192}, publisher = {mathdoc}, volume = {33}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/} }
TY - JOUR AU - Michael Batanin AU - Joachim Kock AU - Mark Weber TI - Regular patterns, substitudes, Feynman categories and operads JO - Theory and applications of categories PY - 2018 SP - 148 EP - 192 VL - 33 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/ LA - en ID - TAC_2018_33_a6 ER -
Michael Batanin; Joachim Kock; Mark Weber. Regular patterns, substitudes, Feynman categories and operads. Theory and applications of categories, Tome 33 (2018), pp. 148-192. http://geodesic.mathdoc.fr/item/TAC_2018_33_a6/