Spans of cospans
Theory and applications of categories, Tome 33 (2018), pp. 131-147.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study spans of cospans in a category C and explain how to horizontally and vertically compose these. When C is a topos and the legs of the spans are monic, these two forms of composition satisfy the interchange law. In this case there is a bicategory of objects, cospans, and `monic-legged' spans of cospans in C. One motivation for this construction is an application to graph rewriting.
Publié le :
Classification : 18D05, 68Q42, 90B10
Keywords: spans, cospans, bicategory, graph rewriting, adhesive category, network theory
@article{TAC_2018_33_a5,
     author = {Daniel Cicala},
     title = {Spans of cospans},
     journal = {Theory and applications of categories},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a5/}
}
TY  - JOUR
AU  - Daniel Cicala
TI  - Spans of cospans
JO  - Theory and applications of categories
PY  - 2018
SP  - 131
EP  - 147
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a5/
LA  - en
ID  - TAC_2018_33_a5
ER  - 
%0 Journal Article
%A Daniel Cicala
%T Spans of cospans
%J Theory and applications of categories
%D 2018
%P 131-147
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a5/
%G en
%F TAC_2018_33_a5
Daniel Cicala. Spans of cospans. Theory and applications of categories, Tome 33 (2018), pp. 131-147. http://geodesic.mathdoc.fr/item/TAC_2018_33_a5/