Contravariance through enrichment
Theory and applications of categories, Tome 33 (2018), pp. 95-130.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define strict and weak duality involutions on 2-categories, and prove a coherence theorem that every bicategory with a weak duality involution is biequivalent to a 2-category with a strict duality involution. For this purpose we introduce "2-categories with contravariance", a sort of enhanced 2-category with a basic notion of "contravariant morphism", which can be regarded either as generalized multicategories or as enriched categories. This enables a universal characterization of duality involutions using absolute weighted colimits, leading to a conceptual proof of the coherence theorem.
Publié le :
Classification : 18D20, 18D05
Keywords: opposite category, contravariant functor, generalized multicategory, enriched category, coherence theorem
@article{TAC_2018_33_a4,
     author = {Michael Shulman},
     title = {Contravariance through enrichment},
     journal = {Theory and applications of categories},
     pages = {95--130},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a4/}
}
TY  - JOUR
AU  - Michael Shulman
TI  - Contravariance through enrichment
JO  - Theory and applications of categories
PY  - 2018
SP  - 95
EP  - 130
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a4/
LA  - en
ID  - TAC_2018_33_a4
ER  - 
%0 Journal Article
%A Michael Shulman
%T Contravariance through enrichment
%J Theory and applications of categories
%D 2018
%P 95-130
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a4/
%G en
%F TAC_2018_33_a4
Michael Shulman. Contravariance through enrichment. Theory and applications of categories, Tome 33 (2018), pp. 95-130. http://geodesic.mathdoc.fr/item/TAC_2018_33_a4/