Polynomials, fibrations and distributive laws
Theory and applications of categories, Tome 33 (2018), pp. 1111-1144.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the structure of the category of polynomials in a locally cartesian closed category. Formalizing the conceptual view that polynomials are constructed from sums and products, we characterize this category in terms of the composite of the pseudomonads which freely add fibred sums and products to fibrations. The composite pseudomonad structure corresponds to a pseudo-distributive law between these two pseudomonads, which exists if and only if the base category is locally cartesian closed.
Publié le :
Classification : {18C20, 18D30, 18D05
Keywords: polynomial functor, fibration, pseudo-distributive law, lax-idempotent monad, locally cartesian closed category, 2-bicategory
@article{TAC_2018_33_a35,
     author = {Tamara von Glehn},
     title = {Polynomials, fibrations and distributive laws},
     journal = {Theory and applications of categories},
     pages = {1111--1144},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a35/}
}
TY  - JOUR
AU  - Tamara von Glehn
TI  - Polynomials, fibrations and distributive laws
JO  - Theory and applications of categories
PY  - 2018
SP  - 1111
EP  - 1144
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a35/
LA  - en
ID  - TAC_2018_33_a35
ER  - 
%0 Journal Article
%A Tamara von Glehn
%T Polynomials, fibrations and distributive laws
%J Theory and applications of categories
%D 2018
%P 1111-1144
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a35/
%G en
%F TAC_2018_33_a35
Tamara von Glehn. Polynomials, fibrations and distributive laws. Theory and applications of categories, Tome 33 (2018), pp. 1111-1144. http://geodesic.mathdoc.fr/item/TAC_2018_33_a35/