Spheres as Frobenius objects
Theory and applications of categories, Tome 33 (2018), pp. 691-726.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Following the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d=1, all the spheres are commutative Frobenius objects in categories whose arrows are (d+1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres - they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.
Publié le :
Classification : 18D35, 57R56
Keywords: symmetric monoidal category, commutative Frobenius object, oriented manifold, cobordism, normal form, coherence, topological quantum field theory, Brauerian representation
@article{TAC_2018_33_a23,
     author = {Djordje Baralic and Zoran Petric and Sonja Telebakovic},
     title = {Spheres as {Frobenius} objects},
     journal = {Theory and applications of categories},
     pages = {691--726},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a23/}
}
TY  - JOUR
AU  - Djordje Baralic
AU  - Zoran Petric
AU  - Sonja Telebakovic
TI  - Spheres as Frobenius objects
JO  - Theory and applications of categories
PY  - 2018
SP  - 691
EP  - 726
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a23/
LA  - en
ID  - TAC_2018_33_a23
ER  - 
%0 Journal Article
%A Djordje Baralic
%A Zoran Petric
%A Sonja Telebakovic
%T Spheres as Frobenius objects
%J Theory and applications of categories
%D 2018
%P 691-726
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a23/
%G en
%F TAC_2018_33_a23
Djordje Baralic; Zoran Petric; Sonja Telebakovic. Spheres as Frobenius objects. Theory and applications of categories, Tome 33 (2018), pp. 691-726. http://geodesic.mathdoc.fr/item/TAC_2018_33_a23/