Decorated corelations
Theory and applications of categories, Tome 33 (2018), pp. 608-643.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let $C$ be a category with finite colimits, and let $(E, M)$ be a factorisation system on $C$ with $M$ stable under pushout. Writing $C;M^{\op}$ for the symmetric monoidal category with morphisms cospans of the form $\stackrel{c}\to \stackrel{m}\leftarrow$, where $c \in C$ and $m \in M$, we give a method for constructing a category from a symmetric lax monoidal functor $F : (C; \mc M^{\op},+) \to (Set,\times)$. A morphism in this category, termed a decorated corelation, comprises (i) a cospan $X \to N \leftarrow Y$ in $C$ such that the canonical copairing $X+Y \to N$ lies in $E$, together with (ii) an element of $FN$. Functors between decorated corelation categories can be constructed from natural transformations between the decorating functors $F$. This provides a general method for constructing hypergraph categories - symmetric monoidal categories in which each object is a special commutative Frobenius monoid in a coherent way - and their functors. Such categories are useful for modelling network languages, for example circuit diagrams, and such functors are useful for modelling their semantics.
Publié le :
Classification : 18C10, 18D10
Keywords: decorated cospan, corelation, Frobenius monoid, hypergraph category, well-supported compact closed category
@article{TAC_2018_33_a21,
     author = {Brendan Fong},
     title = {Decorated corelations},
     journal = {Theory and applications of categories},
     pages = {608--643},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a21/}
}
TY  - JOUR
AU  - Brendan Fong
TI  - Decorated corelations
JO  - Theory and applications of categories
PY  - 2018
SP  - 608
EP  - 643
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a21/
LA  - en
ID  - TAC_2018_33_a21
ER  - 
%0 Journal Article
%A Brendan Fong
%T Decorated corelations
%J Theory and applications of categories
%D 2018
%P 608-643
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a21/
%G en
%F TAC_2018_33_a21
Brendan Fong. Decorated corelations. Theory and applications of categories, Tome 33 (2018), pp. 608-643. http://geodesic.mathdoc.fr/item/TAC_2018_33_a21/