On fibrant objects in model categories
Theory and applications of categories, Tome 33 (2018), pp. 43-66.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this paper, we study properties of maps between fibrant objects in model categories. We give a characterization of weak equivalences between fibrant objects. If every object of a model category is fibrant, then we give a simple description of a set of generating cofibrations. We show that to construct such a model structure it is enough to check some relatively simple conditions.
Publié le :
Classification : 55U35
Keywords: Quillen model structures, fibrant objects
@article{TAC_2018_33_a2,
     author = {Valery Isaev},
     title = {On fibrant objects in model categories},
     journal = {Theory and applications of categories},
     pages = {43--66},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a2/}
}
TY  - JOUR
AU  - Valery Isaev
TI  - On fibrant objects in model categories
JO  - Theory and applications of categories
PY  - 2018
SP  - 43
EP  - 66
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a2/
LA  - en
ID  - TAC_2018_33_a2
ER  - 
%0 Journal Article
%A Valery Isaev
%T On fibrant objects in model categories
%J Theory and applications of categories
%D 2018
%P 43-66
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a2/
%G en
%F TAC_2018_33_a2
Valery Isaev. On fibrant objects in model categories. Theory and applications of categories, Tome 33 (2018), pp. 43-66. http://geodesic.mathdoc.fr/item/TAC_2018_33_a2/