Double power monad preserving adjunctions are Frobenius
Theory and applications of categories, Tome 33 (2018), pp. 476-491.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give a direct proof that between two toposes, F and E, bounded over a base topos S, adjunctions L -| R: Loc_F -> Loc_E over Loc_S are Frobenius if and only if R commutes with the double power locale monad and finite coproducts. The proof uses only certain categorical properties of the category of locales, Loc. This implies that between categories axiomatized to behave like categories of locales, it does not make a difference whether maps are defined as structure preserving adjunctions (i.e. those that commute with the double power monads) or Frobenius adjunctions.
Publié le :
Classification : 06D22, 18D35, 18B40, 22A22
Keywords: topos, locale, geometric morphism, Frobenius reciprocity, power monad
@article{TAC_2018_33_a16,
     author = {Christopher Townsend},
     title = {Double power monad preserving adjunctions are {Frobenius}},
     journal = {Theory and applications of categories},
     pages = {476--491},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a16/}
}
TY  - JOUR
AU  - Christopher Townsend
TI  - Double power monad preserving adjunctions are Frobenius
JO  - Theory and applications of categories
PY  - 2018
SP  - 476
EP  - 491
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a16/
LA  - en
ID  - TAC_2018_33_a16
ER  - 
%0 Journal Article
%A Christopher Townsend
%T Double power monad preserving adjunctions are Frobenius
%J Theory and applications of categories
%D 2018
%P 476-491
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a16/
%G en
%F TAC_2018_33_a16
Christopher Townsend. Double power monad preserving adjunctions are Frobenius. Theory and applications of categories, Tome 33 (2018), pp. 476-491. http://geodesic.mathdoc.fr/item/TAC_2018_33_a16/