KZ-monadic categories and their logic
Theory and applications of categories, Tome 32 (2017), pp. 338-379.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Given an order-enriched category, it is known that all its KZ-monadic subcategories can be described by Kan-injectivity with respect to a collection of morphisms. We prove the analogous result for Kan-injectivity with respect to a collection H of commutative squares. A square is called a Kan-injective consequence of H if by adding it to H Kan-injectivity is not changed.We present a sound logic for Kan-injectivity consequences and prove that in ``reasonable" categories (such as $\Pos$ or $\Top_0$) it is also complete for every set H of squares.
Publié le :
Classification : 18C20, 18B35, 18D20, 54B30, 06B35, 06D22, 18A15
Keywords: order-enriched category, Kan-injectivity, KZ-monad, Kan-injectivity logic, locally ranked category
@article{TAC_2017_32_a9,
     author = {Jiri Adamek and Lurdes Sousa},
     title = {KZ-monadic categories and their logic},
     journal = {Theory and applications of categories},
     pages = {338--379},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a9/}
}
TY  - JOUR
AU  - Jiri Adamek
AU  - Lurdes Sousa
TI  - KZ-monadic categories and their logic
JO  - Theory and applications of categories
PY  - 2017
SP  - 338
EP  - 379
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a9/
LA  - en
ID  - TAC_2017_32_a9
ER  - 
%0 Journal Article
%A Jiri Adamek
%A Lurdes Sousa
%T KZ-monadic categories and their logic
%J Theory and applications of categories
%D 2017
%P 338-379
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a9/
%G en
%F TAC_2017_32_a9
Jiri Adamek; Lurdes Sousa. KZ-monadic categories and their logic. Theory and applications of categories, Tome 32 (2017), pp. 338-379. http://geodesic.mathdoc.fr/item/TAC_2017_32_a9/