Action representability via spans and prefibrations
Theory and applications of categories, Tome 32 (2017), pp. 1501-1521.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give several reformulations of action representability of a category as well as action representability of its category of morphisms. In particular we show that for a semi-abelian category C, its category of morphisms is action representable if and only if the functor from the category of split extensions in C to C, sending a split extension to its kernel, is a prefibration. To obtain these reformulations we show that certain conditions are equivalent for right regular spans of categories.
Publié le :
Classification : 18A05, 18A22, 18A25, 18A40, 18A99, 18B99, 18D99
Keywords: action representable, semi-abelian, split extension, normalizer, prefibration, regular span
@article{TAC_2017_32_a42,
     author = {J. R. A. Gray},
     title = {Action representability via spans and prefibrations},
     journal = {Theory and applications of categories},
     pages = {1501--1521},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a42/}
}
TY  - JOUR
AU  - J. R. A. Gray
TI  - Action representability via spans and prefibrations
JO  - Theory and applications of categories
PY  - 2017
SP  - 1501
EP  - 1521
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a42/
LA  - en
ID  - TAC_2017_32_a42
ER  - 
%0 Journal Article
%A J. R. A. Gray
%T Action representability via spans and prefibrations
%J Theory and applications of categories
%D 2017
%P 1501-1521
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a42/
%G en
%F TAC_2017_32_a42
J. R. A. Gray. Action representability via spans and prefibrations. Theory and applications of categories, Tome 32 (2017), pp. 1501-1521. http://geodesic.mathdoc.fr/item/TAC_2017_32_a42/