Kan's combinatorial spectra and their sheaves revisited
Theory and applications of categories, Tome 32 (2017), pp. 1363-1396.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a right Cartan-Eilenberg structure on the category of Kan's combinatorial spectra, and the category of sheaves of such spectra, assuming some conditions. In both structures, we use the geometric concept of homotopy equivalence as the strong equivalence. In the case of sheaves, we use local equivalence as the weak equivalence. This paper is the first step in a larger-scale program of investigating sheaves of spectra from a geometric viewpoint.
Publié le :
Classification : 57M25, 57M27, 57R58
Keywords: combinatorial spectra, spectral sheaves
@article{TAC_2017_32_a38,
     author = {Ruian Chen and Igor Kriz and Ales Pultr},
     title = {Kan's combinatorial spectra and their sheaves revisited},
     journal = {Theory and applications of categories},
     pages = {1363--1396},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a38/}
}
TY  - JOUR
AU  - Ruian Chen
AU  - Igor Kriz
AU  - Ales Pultr
TI  - Kan's combinatorial spectra and their sheaves revisited
JO  - Theory and applications of categories
PY  - 2017
SP  - 1363
EP  - 1396
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a38/
LA  - en
ID  - TAC_2017_32_a38
ER  - 
%0 Journal Article
%A Ruian Chen
%A Igor Kriz
%A Ales Pultr
%T Kan's combinatorial spectra and their sheaves revisited
%J Theory and applications of categories
%D 2017
%P 1363-1396
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a38/
%G en
%F TAC_2017_32_a38
Ruian Chen; Igor Kriz; Ales Pultr. Kan's combinatorial spectra and their sheaves revisited. Theory and applications of categories, Tome 32 (2017), pp. 1363-1396. http://geodesic.mathdoc.fr/item/TAC_2017_32_a38/