Fibered multiderivators and (co)homological descent
Theory and applications of categories, Tome 32 (2017), pp. 1258-1362.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The theory of derivators enhances and simplifies the theory of triangulated categories. In this article a notion of fibered (multi)derivator is developed, which similarly enhances fibrations of (monoidal) triangulated categories. We present a theory of cohomological as well as homological descent in this language. The main motivation is a descent theory for Grothendieck's six operations.
Publié le :
Classification : 55U35, 14F05, 18D10, 18D30, 18E30, 18G99
Keywords: Derivators, fibered derivators, multiderivators, fibered multicategories, Grothendieck's six-functor-formalism, cohomological descent, homological descent, fundamental localizers, well-generated triangulated categories, equivariant derived categories
@article{TAC_2017_32_a37,
     author = {Fritz H\"ormann},
     title = {Fibered multiderivators and (co)homological descent},
     journal = {Theory and applications of categories},
     pages = {1258--1362},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a37/}
}
TY  - JOUR
AU  - Fritz Hörmann
TI  - Fibered multiderivators and (co)homological descent
JO  - Theory and applications of categories
PY  - 2017
SP  - 1258
EP  - 1362
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a37/
LA  - en
ID  - TAC_2017_32_a37
ER  - 
%0 Journal Article
%A Fritz Hörmann
%T Fibered multiderivators and (co)homological descent
%J Theory and applications of categories
%D 2017
%P 1258-1362
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a37/
%G en
%F TAC_2017_32_a37
Fritz Hörmann. Fibered multiderivators and (co)homological descent. Theory and applications of categories, Tome 32 (2017), pp. 1258-1362. http://geodesic.mathdoc.fr/item/TAC_2017_32_a37/