Localization of enriched categories and cubical sets
Theory and applications of categories, Tome 32 (2017), pp. 1213-1221.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The invertibility hypothesis for a monoidal model category S asks that localizing an S-enriched category with respect to an equivalence results in an weakly equivalent enriched category. This is the most technical among the axioms for S to be an excellent model category in the sense of Lurie, who showed that the category Cat_S of S-enriched categories then has a model structure with characterizable fibrant objects. We use a universal property of cubical sets, as a monoidal model category, to show that the invertibility hypothesis is a consequence of the other axioms.
Publié le :
Classification : 18D20 (primary) 18G55, 18E35 (secondary)
Keywords: Enriched localization, invertibility hypothesis
@article{TAC_2017_32_a34,
     author = {Tyler Lawson},
     title = {Localization of enriched categories and cubical sets},
     journal = {Theory and applications of categories},
     pages = {1213--1221},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a34/}
}
TY  - JOUR
AU  - Tyler Lawson
TI  - Localization of enriched categories and cubical sets
JO  - Theory and applications of categories
PY  - 2017
SP  - 1213
EP  - 1221
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a34/
LA  - en
ID  - TAC_2017_32_a34
ER  - 
%0 Journal Article
%A Tyler Lawson
%T Localization of enriched categories and cubical sets
%J Theory and applications of categories
%D 2017
%P 1213-1221
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a34/
%G en
%F TAC_2017_32_a34
Tyler Lawson. Localization of enriched categories and cubical sets. Theory and applications of categories, Tome 32 (2017), pp. 1213-1221. http://geodesic.mathdoc.fr/item/TAC_2017_32_a34/