Combinatorics of past-similarity in higher dimensional transition systems
Theory and applications of categories, Tome 32 (2017), pp. 1107-1164.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The key notion to understand the left determined Olschok model category of star-shaped Cattani-Sassone transition systems is past-similarity. Two states are past-similar if they have homotopic pasts. An object is fibrant if and only if the set of transitions is closed under past-similarity. A map is a weak equivalence if and only if it induces an isomorphism after the identification of all past-similar states. The last part of this paper is a discussion about the link between causality and homotopy.
Publié le :
Classification : 18C35, 55U35, 18G55, 68Q85
Keywords: left determined model category, combinatorial model category, discrete model structure, higher dimensional transition system, causal structure, bisimulation
@article{TAC_2017_32_a32,
     author = {Philippe Gaucher},
     title = {Combinatorics of past-similarity in higher dimensional transition systems},
     journal = {Theory and applications of categories},
     pages = {1107--1164},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a32/}
}
TY  - JOUR
AU  - Philippe Gaucher
TI  - Combinatorics of past-similarity in higher dimensional transition systems
JO  - Theory and applications of categories
PY  - 2017
SP  - 1107
EP  - 1164
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a32/
LA  - en
ID  - TAC_2017_32_a32
ER  - 
%0 Journal Article
%A Philippe Gaucher
%T Combinatorics of past-similarity in higher dimensional transition systems
%J Theory and applications of categories
%D 2017
%P 1107-1164
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a32/
%G en
%F TAC_2017_32_a32
Philippe Gaucher. Combinatorics of past-similarity in higher dimensional transition systems. Theory and applications of categories, Tome 32 (2017), pp. 1107-1164. http://geodesic.mathdoc.fr/item/TAC_2017_32_a32/