Classifiers for monad morphisms and adjunction morphisms
Theory and applications of categories, Tome 32 (2017), pp. 1050-1097.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We provide an explicit model for the free 2-category containing n composable adjunction morphisms, comparable to the Schanuel and Street model for the free adjunction. We can extract from it an explicit model for the free 2-category containing n composable lax monad morphisms. A careful proof is given, which goes through presentations of the hom-categories of our model. We use one of these hom-categories as an indexing category to construct an extended Artin-Mazur codiagonal, whose underlying bisimplicial set has the classical Artin-Mazur codiagonal as its first column.
Publié le :
Classification : 18C15, 18D05, 18G30, 55U10, 55U35
Keywords: monad, adjunction, 2-category, Artin-Mazur codiagonal
@article{TAC_2017_32_a30,
     author = {Dimitri Zaganidis},
     title = {Classifiers for monad morphisms and adjunction morphisms},
     journal = {Theory and applications of categories},
     pages = {1050--1097},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a30/}
}
TY  - JOUR
AU  - Dimitri Zaganidis
TI  - Classifiers for monad morphisms and adjunction morphisms
JO  - Theory and applications of categories
PY  - 2017
SP  - 1050
EP  - 1097
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a30/
LA  - en
ID  - TAC_2017_32_a30
ER  - 
%0 Journal Article
%A Dimitri Zaganidis
%T Classifiers for monad morphisms and adjunction morphisms
%J Theory and applications of categories
%D 2017
%P 1050-1097
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a30/
%G en
%F TAC_2017_32_a30
Dimitri Zaganidis. Classifiers for monad morphisms and adjunction morphisms. Theory and applications of categories, Tome 32 (2017), pp. 1050-1097. http://geodesic.mathdoc.fr/item/TAC_2017_32_a30/