The canonical 2-gerbe of a holomorphic vector bundle
Theory and applications of categories, Tome 32 (2017), pp. 1028-1049.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For each holomorphic vector bundle we construct a holomorphic bundle 2-gerbe that geometrically represents its second Beilinson-Chern class. Applied to the cotangent bundle, this may be regarded as a higher analogue of the canonical line bundle in complex geometry. Moreover, we exhibit the precise relationship between holomorphic and smooth gerbes. For example, we introduce an Atiyah class for gerbes and prove a Koszul-Malgrange type theorem.
Publié le :
Classification : 18F15
Keywords: Holomorphic Gerbes, Second Chern class, Complex manifolds, Holomorphic vector bundles
@article{TAC_2017_32_a29,
     author = {Markus Upmeier},
     title = {The canonical 2-gerbe of a holomorphic vector bundle},
     journal = {Theory and applications of categories},
     pages = {1028--1049},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a29/}
}
TY  - JOUR
AU  - Markus Upmeier
TI  - The canonical 2-gerbe of a holomorphic vector bundle
JO  - Theory and applications of categories
PY  - 2017
SP  - 1028
EP  - 1049
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a29/
LA  - en
ID  - TAC_2017_32_a29
ER  - 
%0 Journal Article
%A Markus Upmeier
%T The canonical 2-gerbe of a holomorphic vector bundle
%J Theory and applications of categories
%D 2017
%P 1028-1049
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a29/
%G en
%F TAC_2017_32_a29
Markus Upmeier. The canonical 2-gerbe of a holomorphic vector bundle. Theory and applications of categories, Tome 32 (2017), pp. 1028-1049. http://geodesic.mathdoc.fr/item/TAC_2017_32_a29/