A bicategory of decorated cospans
Theory and applications of categories, Tome 32 (2017), pp. 985-1027.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

If C is a category with pullbacks then there is a bicategory with the same objects as C, spans as morphisms, and maps of spans as 2-morphisms, as shown by Benabou. Fong has developed a theory of `decorated cospans', which are cospans in C equipped with extra structure. This extra structure arises from a symmetric lax monoidal functor F : C --> D; we use this functor to `decorate' each cospan with apex N in C with an element of F(N). Using a result of Shulman, we show that when C has finite colimits, decorated cospans are morphisms in a symmetric monoidal bicategory. We illustrate our construction with examples from electrical engineering and the theory of chemical reaction networks.
Publié le :
Classification : 16B50 and 18D35
Keywords: bicategory, decorated cospan, network, symmetric monoidal
@article{TAC_2017_32_a28,
     author = {Kenny Courser},
     title = {A bicategory of decorated cospans},
     journal = {Theory and applications of categories},
     pages = {985--1027},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a28/}
}
TY  - JOUR
AU  - Kenny Courser
TI  - A bicategory of decorated cospans
JO  - Theory and applications of categories
PY  - 2017
SP  - 985
EP  - 1027
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a28/
LA  - en
ID  - TAC_2017_32_a28
ER  - 
%0 Journal Article
%A Kenny Courser
%T A bicategory of decorated cospans
%J Theory and applications of categories
%D 2017
%P 985-1027
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a28/
%G en
%F TAC_2017_32_a28
Kenny Courser. A bicategory of decorated cospans. Theory and applications of categories, Tome 32 (2017), pp. 985-1027. http://geodesic.mathdoc.fr/item/TAC_2017_32_a28/