Biextensions, bimonoidal functors, multilinear functor calculus, and categorical rings
Theory and applications of categories, Tome 32 (2017), pp. 889-969.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We associate to a bimonoidal functor, i.e. a bifunctor which is monoidal in each variable, a nonabelian version of a biextension. We show that such a biextension satisfies additional triviality conditions which make it a bilinear analog of the kind of spans known as butterflies and, conversely, these data determine a bimonoidal functor. We extend this result to n-variables, and prove that, in a manner analogous to that of butterflies, these multi-extensions can be composed. This is phrased in terms of a multilinear functor calculus in a bicategory. As an application, we study a bimonoidal category or stack, treating the multiplicative structure as a bimonoidal functor with respect to the additive one. In the context of the multilinear functor calculus, we view the bimonoidal structure as an instance of the general notion of pseudo-monoid. We show that when the structure is ring-like, i.e. the pseudo-monoid is a stack whose fibers are categorical rings, we can recover the classification by the third Mac~Lane cohomology of a ring with values in a bimodule.
Publié le :
Classification : 18D10, 13D03, 18G55, 55P43, 14A20
Keywords: Categorical ring, biextension, bimonoidal, ring-like stack, butterfly, multi-extension, multi-category, multi-functor, Mac Lane cohomology
@article{TAC_2017_32_a26,
     author = {Ettore Aldrovandi},
     title = {Biextensions, bimonoidal functors, multilinear functor calculus, and
categorical rings},
     journal = {Theory and applications of categories},
     pages = {889--969},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a26/}
}
TY  - JOUR
AU  - Ettore Aldrovandi
TI  - Biextensions, bimonoidal functors, multilinear functor calculus, and
categorical rings
JO  - Theory and applications of categories
PY  - 2017
SP  - 889
EP  - 969
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a26/
LA  - en
ID  - TAC_2017_32_a26
ER  - 
%0 Journal Article
%A Ettore Aldrovandi
%T Biextensions, bimonoidal functors, multilinear functor calculus, and
categorical rings
%J Theory and applications of categories
%D 2017
%P 889-969
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a26/
%G en
%F TAC_2017_32_a26
Ettore Aldrovandi. Biextensions, bimonoidal functors, multilinear functor calculus, and
categorical rings. Theory and applications of categories, Tome 32 (2017), pp. 889-969. http://geodesic.mathdoc.fr/item/TAC_2017_32_a26/