A unifying approach to the acyclic models method and other lifting lemmas
Theory and applications of categories, Tome 32 (2017), pp. 823-834.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove a fundamental lemma of homological algebra and show how it sets a framework for many different lifting (or comparison) theorems of homological algebra and algebraic topology. Among these are different versions of the acyclic models method.
Publié le :
Classification : 18C15, 18G35, 55U25
Keywords: homological algebra, acyclic models, lifting theorems, comparison theorems
@article{TAC_2017_32_a24,
     author = {Leonard Guetta},
     title = {A unifying approach to the acyclic models method and other lifting lemmas},
     journal = {Theory and applications of categories},
     pages = {823--834},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a24/}
}
TY  - JOUR
AU  - Leonard Guetta
TI  - A unifying approach to the acyclic models method and other lifting lemmas
JO  - Theory and applications of categories
PY  - 2017
SP  - 823
EP  - 834
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a24/
LA  - en
ID  - TAC_2017_32_a24
ER  - 
%0 Journal Article
%A Leonard Guetta
%T A unifying approach to the acyclic models method and other lifting lemmas
%J Theory and applications of categories
%D 2017
%P 823-834
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a24/
%G en
%F TAC_2017_32_a24
Leonard Guetta. A unifying approach to the acyclic models method and other lifting lemmas. Theory and applications of categories, Tome 32 (2017), pp. 823-834. http://geodesic.mathdoc.fr/item/TAC_2017_32_a24/