Levi categories and graphs of groups
Theory and applications of categories, Tome 32 (2017), pp. 780-802.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a Levi category to be a weakly orthogonal category equipped with a suitable length functor and prove two main theorems about them. First, skeletal cancellative Levi categories are precisely the categorical versions of graphs of groups with a given orientation. Second, the universal groupoid of a skeletal cancellative Levi category is the fundamental groupoid of the corresponding graph of groups. These two results can be viewed as a co-ordinate-free refinement of a classical theorem of Philip Higgins.
Publié le :
Classification : 18B40, 20E06
Keywords: Graphs of groups, self-similar groupoid actions, cancellative categories
@article{TAC_2017_32_a22,
     author = {Mark V. Lawson and Alistair R. Wallis},
     title = {Levi categories and graphs of groups},
     journal = {Theory and applications of categories},
     pages = {780--802},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a22/}
}
TY  - JOUR
AU  - Mark V. Lawson
AU  - Alistair R. Wallis
TI  - Levi categories and graphs of groups
JO  - Theory and applications of categories
PY  - 2017
SP  - 780
EP  - 802
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a22/
LA  - en
ID  - TAC_2017_32_a22
ER  - 
%0 Journal Article
%A Mark V. Lawson
%A Alistair R. Wallis
%T Levi categories and graphs of groups
%J Theory and applications of categories
%D 2017
%P 780-802
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a22/
%G en
%F TAC_2017_32_a22
Mark V. Lawson; Alistair R. Wallis. Levi categories and graphs of groups. Theory and applications of categories, Tome 32 (2017), pp. 780-802. http://geodesic.mathdoc.fr/item/TAC_2017_32_a22/