Epireflective subcategories and formal closure operators
Theory and applications of categories, Tome 32 (2017), pp. 526-546.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

On a category $\mathscr{C}$ with a designated (well-behaved) class $\mathcal{M}$ of monomorphisms, a closure operator in the sense of D.~Dikranjan and E.~Giuli is a pointed endofunctor of $\mathcal{M}$, seen as a full subcategory of the arrow-category $\mathscr{C}^\mathbf{2}$ whose objects are morphisms from the class $\mathcal{M}$, which ``commutes'' with the codomain functor $\mathsf{cod}\colon \mathcal{M}\to \mathscr{C}$. In other words, a closure operator consists of a functor $C\colon \mathcal{M}\to\mathcal{M}$ and a natural transformation $c\colon 1_\mathcal{M}\to C$ such that $\mathsf{cod} \cdot C=C$ and $\mathsf{cod}\cdot c=1_\mathsf{cod}$. In this paper we adapt this notion to the domain functor $\mathsf{dom}\colon \mathcal{E}\to\mathscr{C}$, where $\mathcal{E}$ is a class of epimorphisms in $\mathscr{C}$, and show that such closure operators can be used to classify $\mathcal{E}$-epireflective subcategories of $\mathscr{C}$, provided $\mathcal{E}$ is closed under composition and contains isomorphisms.
Publié le :
Classification : 18A40, 18A20, 18A22, 18A32, 18D30, 08C15
Keywords: category of morphisms, category of epimorphisms, category of monomorphisms, cartesian lifting, closure operator, codomain functor, cohereditary operator, domain functor, epimorphism, epireflective subcategory, form, minimal operator, monomorphism, normal category, pointed endofunctor, reflection, reflective subcategory, regular category, subobject, quotient
@article{TAC_2017_32_a14,
     author = {Mathieu Duckerts-Antoine and Marino Gran and Zurab Janelidze},
     title = {Epireflective subcategories and formal closure operators},
     journal = {Theory and applications of categories},
     pages = {526--546},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/}
}
TY  - JOUR
AU  - Mathieu Duckerts-Antoine
AU  - Marino Gran
AU  - Zurab Janelidze
TI  - Epireflective subcategories and formal closure operators
JO  - Theory and applications of categories
PY  - 2017
SP  - 526
EP  - 546
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/
LA  - en
ID  - TAC_2017_32_a14
ER  - 
%0 Journal Article
%A Mathieu Duckerts-Antoine
%A Marino Gran
%A Zurab Janelidze
%T Epireflective subcategories and formal closure operators
%J Theory and applications of categories
%D 2017
%P 526-546
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/
%G en
%F TAC_2017_32_a14
Mathieu Duckerts-Antoine; Marino Gran; Zurab Janelidze. Epireflective subcategories and formal closure operators. Theory and applications of categories, Tome 32 (2017), pp. 526-546. http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/