Voir la notice de l'article provenant de la source Theory and Applications of Categories website
On a category $\mathscr{C}$ with a designated (well-behaved) class $\mathcal{M}$ of monomorphisms, a closure operator in the sense of D.~Dikranjan and E.~Giuli is a pointed endofunctor of $\mathcal{M}$, seen as a full subcategory of the arrow-category $\mathscr{C}^\mathbf{2}$ whose objects are morphisms from the class $\mathcal{M}$, which ``commutes'' with the codomain functor $\mathsf{cod}\colon \mathcal{M}\to \mathscr{C}$. In other words, a closure operator consists of a functor $C\colon \mathcal{M}\to\mathcal{M}$ and a natural transformation $c\colon 1_\mathcal{M}\to C$ such that $\mathsf{cod} \cdot C=C$ and $\mathsf{cod}\cdot c=1_\mathsf{cod}$. In this paper we adapt this notion to the domain functor $\mathsf{dom}\colon \mathcal{E}\to\mathscr{C}$, where $\mathcal{E}$ is a class of epimorphisms in $\mathscr{C}$, and show that such closure operators can be used to classify $\mathcal{E}$-epireflective subcategories of $\mathscr{C}$, provided $\mathcal{E}$ is closed under composition and contains isomorphisms.
Keywords: category of morphisms, category of epimorphisms, category of monomorphisms, cartesian lifting, closure operator, codomain functor, cohereditary operator, domain functor, epimorphism, epireflective subcategory, form, minimal operator, monomorphism, normal category, pointed endofunctor, reflection, reflective subcategory, regular category, subobject, quotient
@article{TAC_2017_32_a14,
author = {Mathieu Duckerts-Antoine and Marino Gran and Zurab Janelidze},
title = {Epireflective subcategories and formal closure operators},
journal = {Theory and applications of categories},
pages = {526--546},
publisher = {mathdoc},
volume = {32},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/}
}
TY - JOUR AU - Mathieu Duckerts-Antoine AU - Marino Gran AU - Zurab Janelidze TI - Epireflective subcategories and formal closure operators JO - Theory and applications of categories PY - 2017 SP - 526 EP - 546 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/ LA - en ID - TAC_2017_32_a14 ER -
Mathieu Duckerts-Antoine; Marino Gran; Zurab Janelidze. Epireflective subcategories and formal closure operators. Theory and applications of categories, Tome 32 (2017), pp. 526-546. http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/