Voir la notice de l'article provenant de la source Theory and Applications of Categories website
On a category $\mathscr{C}$ with a designated (well-behaved) class $\mathcal{M}$ of monomorphisms, a closure operator in the sense of D.~Dikranjan and E.~Giuli is a pointed endofunctor of $\mathcal{M}$, seen as a full subcategory of the arrow-category $\mathscr{C}^\mathbf{2}$ whose objects are morphisms from the class $\mathcal{M}$, which ``commutes'' with the codomain functor $\mathsf{cod}\colon \mathcal{M}\to \mathscr{C}$. In other words, a closure operator consists of a functor $C\colon \mathcal{M}\to\mathcal{M}$ and a natural transformation $c\colon 1_\mathcal{M}\to C$ such that $\mathsf{cod} \cdot C=C$ and $\mathsf{cod}\cdot c=1_\mathsf{cod}$. In this paper we adapt this notion to the domain functor $\mathsf{dom}\colon \mathcal{E}\to\mathscr{C}$, where $\mathcal{E}$ is a class of epimorphisms in $\mathscr{C}$, and show that such closure operators can be used to classify $\mathcal{E}$-epireflective subcategories of $\mathscr{C}$, provided $\mathcal{E}$ is closed under composition and contains isomorphisms.
@article{TAC_2017_32_a14, author = {Mathieu Duckerts-Antoine and Marino Gran and Zurab Janelidze}, title = {Epireflective subcategories and formal closure operators}, journal = {Theory and applications of categories}, pages = {526--546}, publisher = {mathdoc}, volume = {32}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/} }
TY - JOUR AU - Mathieu Duckerts-Antoine AU - Marino Gran AU - Zurab Janelidze TI - Epireflective subcategories and formal closure operators JO - Theory and applications of categories PY - 2017 SP - 526 EP - 546 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/ LA - en ID - TAC_2017_32_a14 ER -
Mathieu Duckerts-Antoine; Marino Gran; Zurab Janelidze. Epireflective subcategories and formal closure operators. Theory and applications of categories, Tome 32 (2017), pp. 526-546. http://geodesic.mathdoc.fr/item/TAC_2017_32_a14/