Building a model category out of multiplier ideal sheaves
Theory and applications of categories, Tome 32 (2017), pp. 437-487.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We will construct a Quillen model structure out of the multiplier ideal sheaves on a smooth quasi-projective variety using earlier works of Isaksen and Barnea and Schlank. We also show that fibrant objects of this model category are made of kawamata log terminal pairs in birational geometry.
Publié le :
Classification : 14F18, 18G55
Keywords: Multiplier Ideal sheaf, Model Category, Pro-Category
@article{TAC_2017_32_a12,
     author = {Seunghun Lee},
     title = {Building a model category out of multiplier ideal sheaves},
     journal = {Theory and applications of categories},
     pages = {437--487},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a12/}
}
TY  - JOUR
AU  - Seunghun Lee
TI  - Building a model category out of multiplier ideal sheaves
JO  - Theory and applications of categories
PY  - 2017
SP  - 437
EP  - 487
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a12/
LA  - en
ID  - TAC_2017_32_a12
ER  - 
%0 Journal Article
%A Seunghun Lee
%T Building a model category out of multiplier ideal sheaves
%J Theory and applications of categories
%D 2017
%P 437-487
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a12/
%G en
%F TAC_2017_32_a12
Seunghun Lee. Building a model category out of multiplier ideal sheaves. Theory and applications of categories, Tome 32 (2017), pp. 437-487. http://geodesic.mathdoc.fr/item/TAC_2017_32_a12/