Corelations are the prop for extraspecial commutative Frobenius monoids
Theory and applications of categories, Tome 32 (2017), pp. 380-395.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Just as binary relations between sets may be understood as jointly monic spans, so too may equivalence relations on the disjoint union of sets be understood as jointly epic cospans. With the ensuing notion of composition inherited from the pushout of cospans, we call these equivalence relations corelations. We define the category of corelations between finite sets and prove that it is equivalent to the prop for extraspecial commutative Frobenius monoids. Dually, we show that the category of relations is equivalent to the prop for special commutative bimonoids. Throughout, we emphasise how corelations model interconnection.
Publié le :
Classification : 18C10, 18D10
Keywords: corelation, extra law, Frobenius monoid, prop, PROP
@article{TAC_2017_32_a10,
     author = {Brandon Coya and Brendan Fong},
     title = {Corelations are the prop for extraspecial commutative {Frobenius} monoids},
     journal = {Theory and applications of categories},
     pages = {380--395},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a10/}
}
TY  - JOUR
AU  - Brandon Coya
AU  - Brendan Fong
TI  - Corelations are the prop for extraspecial commutative Frobenius monoids
JO  - Theory and applications of categories
PY  - 2017
SP  - 380
EP  - 395
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a10/
LA  - en
ID  - TAC_2017_32_a10
ER  - 
%0 Journal Article
%A Brandon Coya
%A Brendan Fong
%T Corelations are the prop for extraspecial commutative Frobenius monoids
%J Theory and applications of categories
%D 2017
%P 380-395
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a10/
%G en
%F TAC_2017_32_a10
Brandon Coya; Brendan Fong. Corelations are the prop for extraspecial commutative Frobenius monoids. Theory and applications of categories, Tome 32 (2017), pp. 380-395. http://geodesic.mathdoc.fr/item/TAC_2017_32_a10/