Simplicial Nerve of an $A_\infty$-category
Theory and applications of categories, Tome 32 (2017), pp. 31-52
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce a functor called the simplicial nerve of an $A_\infty$-category defined on the category of $A_\infty$-categories with values in simplicial sets. We show that the nerve of an $A_\infty$-category is an $(\infty,1)$-category in the sense of J. Lurie. This construction generalizes the nerve construction for differential graded categories given by Lurie. We prove that if a differential graded category is pretriangulated in the sense of A.I. Bondal and M. Kapranov then its nerve is a stable $(\infty,1)$-category in the sense of J. Lurie.
Publié le :
Classification :
18G30
Keywords: $A_\infty$-categories, nerve, higher categories, pretriangulated dg-categories
Keywords: $A_\infty$-categories, nerve, higher categories, pretriangulated dg-categories
@article{TAC_2017_32_a1,
author = {Giovanni Faonte},
title = {Simplicial {Nerve} of an $A_\infty$-category},
journal = {Theory and applications of categories},
pages = {31--52},
publisher = {mathdoc},
volume = {32},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/}
}
Giovanni Faonte. Simplicial Nerve of an $A_\infty$-category. Theory and applications of categories, Tome 32 (2017), pp. 31-52. http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/