Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce a functor called the simplicial nerve of an $A_\infty$-category defined on the category of $A_\infty$-categories with values in simplicial sets. We show that the nerve of an $A_\infty$-category is an $(\infty,1)$-category in the sense of J. Lurie. This construction generalizes the nerve construction for differential graded categories given by Lurie. We prove that if a differential graded category is pretriangulated in the sense of A.I. Bondal and M. Kapranov then its nerve is a stable $(\infty,1)$-category in the sense of J. Lurie.
@article{TAC_2017_32_a1, author = {Giovanni Faonte}, title = {Simplicial {Nerve} of an $A_\infty$-category}, journal = {Theory and applications of categories}, pages = {31--52}, publisher = {mathdoc}, volume = {32}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/} }
Giovanni Faonte. Simplicial Nerve of an $A_\infty$-category. Theory and applications of categories, Tome 32 (2017), pp. 31-52. http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/