Simplicial Nerve of an $A_\infty$-category
Theory and applications of categories, Tome 32 (2017), pp. 31-52.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce a functor called the simplicial nerve of an $A_\infty$-category defined on the category of $A_\infty$-categories with values in simplicial sets. We show that the nerve of an $A_\infty$-category is an $(\infty,1)$-category in the sense of J. Lurie. This construction generalizes the nerve construction for differential graded categories given by Lurie. We prove that if a differential graded category is pretriangulated in the sense of A.I. Bondal and M. Kapranov then its nerve is a stable $(\infty,1)$-category in the sense of J. Lurie.
Publié le :
Classification : 18G30
Keywords: $A_\infty$-categories, nerve, higher categories, pretriangulated dg-categories
@article{TAC_2017_32_a1,
     author = {Giovanni Faonte},
     title = {Simplicial {Nerve} of an $A_\infty$-category},
     journal = {Theory and applications of categories},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/}
}
TY  - JOUR
AU  - Giovanni Faonte
TI  - Simplicial Nerve of an $A_\infty$-category
JO  - Theory and applications of categories
PY  - 2017
SP  - 31
EP  - 52
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/
LA  - en
ID  - TAC_2017_32_a1
ER  - 
%0 Journal Article
%A Giovanni Faonte
%T Simplicial Nerve of an $A_\infty$-category
%J Theory and applications of categories
%D 2017
%P 31-52
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/
%G en
%F TAC_2017_32_a1
Giovanni Faonte. Simplicial Nerve of an $A_\infty$-category. Theory and applications of categories, Tome 32 (2017), pp. 31-52. http://geodesic.mathdoc.fr/item/TAC_2017_32_a1/