A structure theorem for quasi-Hopf bimodule coalgebras
Theory and applications of categories, Tome 32 (2017), pp. 1-30.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let H be a quasi-Hopf algebra. We show that any H-bimodule coalgebra C for which there exists an H-bimodule coalgebra morphism n : C -> H is isomorphic to what we will call a smash product coalgebra. To this end, we use an explicit monoidal equivalence between the category of two-sided two-cosided Hopf modules over H and the category of left Yetter-Drinfeld modules over H. This categorical method allows also to reobtain the structure theorem for a quasi-Hopf (bi)comodule algebra given by Panaite and Van Oystaeyen, and by Dello et al.
Publié le :
Classification : 16W30, 18D10, 16S34
Keywords: monoidal equivalence, (bi)comodule algebra, bimodule coalgebra, structure theorem
@article{TAC_2017_32_a0,
     author = {Daniel Bulacu},
     title = {A structure theorem for {quasi-Hopf} bimodule coalgebras},
     journal = {Theory and applications of categories},
     pages = {1--30},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/}
}
TY  - JOUR
AU  - Daniel Bulacu
TI  - A structure theorem for quasi-Hopf bimodule coalgebras
JO  - Theory and applications of categories
PY  - 2017
SP  - 1
EP  - 30
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/
LA  - en
ID  - TAC_2017_32_a0
ER  - 
%0 Journal Article
%A Daniel Bulacu
%T A structure theorem for quasi-Hopf bimodule coalgebras
%J Theory and applications of categories
%D 2017
%P 1-30
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/
%G en
%F TAC_2017_32_a0
Daniel Bulacu. A structure theorem for quasi-Hopf bimodule coalgebras. Theory and applications of categories, Tome 32 (2017), pp. 1-30. http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/