A structure theorem for quasi-Hopf bimodule coalgebras
Theory and applications of categories, Tome 32 (2017), pp. 1-30
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Let H be a quasi-Hopf algebra. We show that any H-bimodule coalgebra C for which there exists an H-bimodule coalgebra morphism n : C -> H is isomorphic to what we will call a smash product coalgebra. To this end, we use an explicit monoidal equivalence between the category of two-sided two-cosided Hopf modules over H and the category of left Yetter-Drinfeld modules over H. This categorical method allows also to reobtain the structure theorem for a quasi-Hopf (bi)comodule algebra given by Panaite and Van Oystaeyen, and by Dello et al.
Publié le :
Classification :
16W30, 18D10, 16S34
Keywords: monoidal equivalence, (bi)comodule algebra, bimodule coalgebra, structure theorem
Keywords: monoidal equivalence, (bi)comodule algebra, bimodule coalgebra, structure theorem
@article{TAC_2017_32_a0,
author = {Daniel Bulacu},
title = {A structure theorem for {quasi-Hopf} bimodule coalgebras},
journal = {Theory and applications of categories},
pages = {1--30},
publisher = {mathdoc},
volume = {32},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/}
}
Daniel Bulacu. A structure theorem for quasi-Hopf bimodule coalgebras. Theory and applications of categories, Tome 32 (2017), pp. 1-30. http://geodesic.mathdoc.fr/item/TAC_2017_32_a0/