Transfinite limits in topos theory
Theory and applications of categories, Tome 31 (2016), pp. 175-200.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a coherent site we construct a canonically associated enlarged coherent site, such that cohomology of bounded below complexes is preserved by the enlargement. In the topos associated to the enlarged site transfinite compositions of epimorphisms are epimorphisms and a weak analog of the concept of the algebraic closure exists. The construction is a variant of the work of Bhatt and Scholze on the pro-etale topology.
Publié le :
Classification : 18F10, 18F20
Keywords: topos theory, pro-etale topology
@article{TAC_2016_31_a6,
     author = {Moritz Kerz},
     title = {Transfinite limits in topos theory},
     journal = {Theory and applications of categories},
     pages = {175--200},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a6/}
}
TY  - JOUR
AU  - Moritz Kerz
TI  - Transfinite limits in topos theory
JO  - Theory and applications of categories
PY  - 2016
SP  - 175
EP  - 200
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a6/
LA  - en
ID  - TAC_2016_31_a6
ER  - 
%0 Journal Article
%A Moritz Kerz
%T Transfinite limits in topos theory
%J Theory and applications of categories
%D 2016
%P 175-200
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a6/
%G en
%F TAC_2016_31_a6
Moritz Kerz. Transfinite limits in topos theory. Theory and applications of categories, Tome 31 (2016), pp. 175-200. http://geodesic.mathdoc.fr/item/TAC_2016_31_a6/