Monads on dagger categories
Theory and applications of categories, Tome 31 (2016), pp. 1016-1043.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius-Eilenberg-Moore algebras, which again have a dagger. We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids.
Publié le :
Classification : 18A40, 18C15, 18C20, 18D10, 18D15, 18D35
Keywords: Dagger category, Frobenius monad, Kleisli algebra, Eilenberg-Moore algebra
@article{TAC_2016_31_a34,
     author = {Chris Heunen and Martti Karvonen},
     title = {Monads on dagger categories},
     journal = {Theory and applications of categories},
     pages = {1016--1043},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a34/}
}
TY  - JOUR
AU  - Chris Heunen
AU  - Martti Karvonen
TI  - Monads on dagger categories
JO  - Theory and applications of categories
PY  - 2016
SP  - 1016
EP  - 1043
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a34/
LA  - en
ID  - TAC_2016_31_a34
ER  - 
%0 Journal Article
%A Chris Heunen
%A Martti Karvonen
%T Monads on dagger categories
%J Theory and applications of categories
%D 2016
%P 1016-1043
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a34/
%G en
%F TAC_2016_31_a34
Chris Heunen; Martti Karvonen. Monads on dagger categories. Theory and applications of categories, Tome 31 (2016), pp. 1016-1043. http://geodesic.mathdoc.fr/item/TAC_2016_31_a34/