Compact closed bicategories
Theory and applications of categories, Tome 31 (2016), pp. 755-798.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

A compact closed bicategory is a symmetric monoidal bicategory where every object is equipped with a weak dual. The unit and counit satisfy the usual ``zig-zag'' identities of a compact closed category only up to natural isomorphism, and the isomorphism is subject to a coherence law. We give several examples of compact closed bicategories, then review previous work. In particular, Day and Street defined compact closed bicategories indirectly via Gray monoids and then appealed to a coherence theorem to extend the concept to bicategories; we restate the definition directly.We prove that given a 2-category T with finite products and weak pullbacks, the bicategory of objects of C, spans, and isomorphism classes of maps of spans is compact closed. As corollaries, the bicategory of spans of sets and certain bicategories of ``resistor networks'' are compact closed.
Publié le :
Classification : 18D05, 18D15
Keywords: compact, closed, bicategory, span 18D05, 18D15
@article{TAC_2016_31_a25,
     author = {Michael Stay},
     title = {Compact closed bicategories},
     journal = {Theory and applications of categories},
     pages = {755--798},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a25/}
}
TY  - JOUR
AU  - Michael Stay
TI  - Compact closed bicategories
JO  - Theory and applications of categories
PY  - 2016
SP  - 755
EP  - 798
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a25/
LA  - en
ID  - TAC_2016_31_a25
ER  - 
%0 Journal Article
%A Michael Stay
%T Compact closed bicategories
%J Theory and applications of categories
%D 2016
%P 755-798
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a25/
%G en
%F TAC_2016_31_a25
Michael Stay. Compact closed bicategories. Theory and applications of categories, Tome 31 (2016), pp. 755-798. http://geodesic.mathdoc.fr/item/TAC_2016_31_a25/