On the magnitude of a finite dimensional algebra
Theory and applications of categories, Tome 31 (2016), pp. 63-72.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

There is a general notion of the magnitude of an enriched category, defined subject to hypotheses. In topological and geometric contexts, magnitude is already known to be closely related to classical invariants such as Euler characteristic and dimension. Here we establish its significance in an algebraic context. Specifically, in the representation theory of an associative algebra $A$, a central role is played by the indecomposable projective $A$-modules, which form a category enriched in vector spaces. We show that the magnitude of that category is a known homological invariant of the algebra: writing $\chi_A$ for the Euler form of $A$ and $S$ for the direct sum of the simple $A$-modules, it is $\chi_A(S,S)$.
Publié le :
Classification : 18G99 (primary), 16D40, 16D60, 16G99, 18E05, 18G15
Keywords: algebra, magnitude, indecomposable projective, simple module, Cartan matrix, Euler form, Cartan determinant conjecture
@article{TAC_2016_31_a2,
     author = {Joseph Chuang and Alastair King and Tom Leinster},
     title = {On the magnitude of a finite dimensional algebra},
     journal = {Theory and applications of categories},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a2/}
}
TY  - JOUR
AU  - Joseph Chuang
AU  - Alastair King
AU  - Tom Leinster
TI  - On the magnitude of a finite dimensional algebra
JO  - Theory and applications of categories
PY  - 2016
SP  - 63
EP  - 72
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a2/
LA  - en
ID  - TAC_2016_31_a2
ER  - 
%0 Journal Article
%A Joseph Chuang
%A Alastair King
%A Tom Leinster
%T On the magnitude of a finite dimensional algebra
%J Theory and applications of categories
%D 2016
%P 63-72
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a2/
%G en
%F TAC_2016_31_a2
Joseph Chuang; Alastair King; Tom Leinster. On the magnitude of a finite dimensional algebra. Theory and applications of categories, Tome 31 (2016), pp. 63-72. http://geodesic.mathdoc.fr/item/TAC_2016_31_a2/