Linear structures on locales
Theory and applications of categories, Tome 31 (2016), pp. 502-541.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a notion of morphism for quotient vector bundles that yields both a category $QVBun$ and a contravariant global sections functor $C:QVBun^{op} \to Vect$ whose restriction to trivial vector bundles with fiber F coincides with the contravariant functor $Top^{op} \to Vect$ of F-valued continuous functions. Based on this we obtain a linear extension of the adjunction between the categories of topological spaces and locales: (i) a linearized topological space is a spectral vector bundle, by which is meant a mildly restricted type of quotient vector bundle; (ii) a linearized locale is a locale $\Delta$ equipped with both a topological vector space A and a $\Delta$-valued support map for the elements of A satisfying a continuity condition relative to the spectrum of $\Delta$ and the lower Vietoris topology on $Sub A$; (iii) we obtain an adjunction between the full subcategory of spectral vector bundles $QVBun_\Sigma$ and the category of linearized locales $LinLoc$, which restricts to an equivalence of categories between sober spectral vector bundles and spatial linearized locales. The spectral vector bundles are classified by a finer topology on $Sub A$, called the open support topology, but there is no notion of universal spectral vector bundle for an arbitrary topological vector space A.
Publié le :
Classification : 06D22, 18B30, 18B99, 46A99, 46M20, 55R65
Keywords: Quotient vector bundles, locales, Banach bundles, lower Vietoris topology, Fell topology
@article{TAC_2016_31_a19,
     author = {Pedro Resende and Joao Paulo Santos},
     title = {Linear structures on locales},
     journal = {Theory and applications of categories},
     pages = {502--541},
     publisher = {mathdoc},
     volume = {31},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2016_31_a19/}
}
TY  - JOUR
AU  - Pedro Resende
AU  - Joao Paulo Santos
TI  - Linear structures on locales
JO  - Theory and applications of categories
PY  - 2016
SP  - 502
EP  - 541
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2016_31_a19/
LA  - en
ID  - TAC_2016_31_a19
ER  - 
%0 Journal Article
%A Pedro Resende
%A Joao Paulo Santos
%T Linear structures on locales
%J Theory and applications of categories
%D 2016
%P 502-541
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2016_31_a19/
%G en
%F TAC_2016_31_a19
Pedro Resende; Joao Paulo Santos. Linear structures on locales. Theory and applications of categories, Tome 31 (2016), pp. 502-541. http://geodesic.mathdoc.fr/item/TAC_2016_31_a19/