On reflective subcategories of locally presentable categories
Theory and applications of categories, Tome 30 (2015), pp. 1306-18.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Are all subcategories of locally finitely presentable categories that are closed under limits and $\lambda$-filtered colimits also locally presentable? For full subcategories the answer is affirmative. Makkai and Pitts proved that in the case $\lambda = \aleph_0$ the answer is affirmative also for all iso-full subcategories, i. e., those containing with every pair of objects all isomorphisms between them. We discuss a possible generalization of this from $\aleph_0$ to an arbitrary $\lambda$.
Publié le :
Classification : 18A40, 18C35
Keywords: locally presentable category, reflective subcategory, elementary equivalence
@article{TAC_2015_30_a40,
     author = {J. Adamek and J. Rosicky},
     title = {On reflective subcategories of locally presentable categories},
     journal = {Theory and applications of categories},
     pages = {1306--18},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a40/}
}
TY  - JOUR
AU  - J. Adamek
AU  - J. Rosicky
TI  - On reflective subcategories of locally presentable categories
JO  - Theory and applications of categories
PY  - 2015
SP  - 1306
EP  - 18
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a40/
LA  - en
ID  - TAC_2015_30_a40
ER  - 
%0 Journal Article
%A J. Adamek
%A J. Rosicky
%T On reflective subcategories of locally presentable categories
%J Theory and applications of categories
%D 2015
%P 1306-18
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a40/
%G en
%F TAC_2015_30_a40
J. Adamek; J. Rosicky. On reflective subcategories of locally presentable categories. Theory and applications of categories, Tome 30 (2015), pp. 1306-18. http://geodesic.mathdoc.fr/item/TAC_2015_30_a40/