Segal group actions
Theory and applications of categories, Tome 30 (2015), pp. 1287-1305.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a model category structure on a slice category of simplicial spaces, called the "Segal group action" structure, whose fibrant-cofibrant objects may be viewed as representing spaces $X$ with an action of a fixed Segal group (i.e. a group-like, reduced Segal space). We show that this model structure is Quillen equivalent to the projective model structure on $G$-spaces, $S^BG}$, where $G$ is a simplicial group corresponding to the Segal group. One advantage of this model is that if we start with an ordinary group action $X\in S^BG$ and apply a weakly monoidal functor of spaces $L: S \to S$ (such as localization or completion) on each simplicial degree of its associated Segal group action, we get a new Segal group action of $LG$ on $LX$ which can then be rigidified via the above-mentioned Quillen equivalence.
Publié le :
Classification : 55U35
Keywords: Model category, Segal space, group action, equivariant homotopy theory
@article{TAC_2015_30_a39,
     author = {Matan Prasma},
     title = {Segal group actions},
     journal = {Theory and applications of categories},
     pages = {1287--1305},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a39/}
}
TY  - JOUR
AU  - Matan Prasma
TI  - Segal group actions
JO  - Theory and applications of categories
PY  - 2015
SP  - 1287
EP  - 1305
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a39/
LA  - en
ID  - TAC_2015_30_a39
ER  - 
%0 Journal Article
%A Matan Prasma
%T Segal group actions
%J Theory and applications of categories
%D 2015
%P 1287-1305
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a39/
%G en
%F TAC_2015_30_a39
Matan Prasma. Segal group actions. Theory and applications of categories, Tome 30 (2015), pp. 1287-1305. http://geodesic.mathdoc.fr/item/TAC_2015_30_a39/