A C-system defined by a universe category
Theory and applications of categories, Tome 30 (2015), pp. 1181-1214.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This is the third paper in a series. In it we construct a C-system CC(C,p) starting from a category C together with a morphism $p:\tilde{U} \to U$, a choice of pull-back squares based on $p$ for all morphisms to $U$ and a choice of a final object of C. Such a quadruple is called a universe category. We then define universe category functors and construct homomorphisms of C-systems CC(C,p) defined by universe category functors.In the sections before the last section we give, for any C-system CC, three different constructions of pairs ((C,p),H) where (C,p) is a universe category and $H : CC \to CC(C,p)$ is an isomorphism. In the last section we construct for any (set) category C with a choice of a final object and fiber products a C-system and an equivalence between C and the precategory underlying CC.
Publié le :
Classification : 03F50, 03B15, 03G25
Keywords: contextual category, universe category, C-system
@article{TAC_2015_30_a36,
     author = {Vladimir Voevodsky},
     title = {A {C-system} defined by a universe category},
     journal = {Theory and applications of categories},
     pages = {1181--1214},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a36/}
}
TY  - JOUR
AU  - Vladimir Voevodsky
TI  - A C-system defined by a universe category
JO  - Theory and applications of categories
PY  - 2015
SP  - 1181
EP  - 1214
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a36/
LA  - en
ID  - TAC_2015_30_a36
ER  - 
%0 Journal Article
%A Vladimir Voevodsky
%T A C-system defined by a universe category
%J Theory and applications of categories
%D 2015
%P 1181-1214
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a36/
%G en
%F TAC_2015_30_a36
Vladimir Voevodsky. A C-system defined by a universe category. Theory and applications of categories, Tome 30 (2015), pp. 1181-1214. http://geodesic.mathdoc.fr/item/TAC_2015_30_a36/