Decorated cospans
Theory and applications of categories, Tome 30 (2015), pp. 1096-1120.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let $C$ be a category with finite colimits, writing its coproduct +, and let $(D, \otimes)$ be a braided monoidal category. We describe a method of producing a symmetric monoidal category from a lax braided monoidal functor $F : (C,+) \to (D, \otimes)$, and of producing a strong monoidal functor between such categories from a monoidal natural transformation between such functors. The objects of these categories, our so-called `decorated cospan categories', are simply the objects of $C$, while the morphisms are pairs comprising a cospan $X \rightarrow N \leftarrow Y$ in $C$ together with an element $1 \to FN$ in $D$. Moreover, decorated cospan categories are hypergraph categories - each object is equipped with a special commutative Frobenius monoid - and their functors preserve this structure.
Publié le :
Classification : 18C10, 18D10
Keywords: cospan, decorated cospan, hypergraph category, well-supported compact closed category, separable algebra, Frobenius algebra, Frobenius monoid
@article{TAC_2015_30_a32,
     author = {Brendan Fong},
     title = {Decorated cospans},
     journal = {Theory and applications of categories},
     pages = {1096--1120},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a32/}
}
TY  - JOUR
AU  - Brendan Fong
TI  - Decorated cospans
JO  - Theory and applications of categories
PY  - 2015
SP  - 1096
EP  - 1120
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a32/
LA  - en
ID  - TAC_2015_30_a32
ER  - 
%0 Journal Article
%A Brendan Fong
%T Decorated cospans
%J Theory and applications of categories
%D 2015
%P 1096-1120
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a32/
%G en
%F TAC_2015_30_a32
Brendan Fong. Decorated cospans. Theory and applications of categories, Tome 30 (2015), pp. 1096-1120. http://geodesic.mathdoc.fr/item/TAC_2015_30_a32/