Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
@article{TAC_2015_30_a25, author = {F. W. Lawvere and M. Menni}, title = {Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness}, journal = {Theory and applications of categories}, pages = {909--932}, publisher = {mathdoc}, volume = {30}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/} }
TY - JOUR AU - F. W. Lawvere AU - M. Menni TI - Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness JO - Theory and applications of categories PY - 2015 SP - 909 EP - 932 VL - 30 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/ LA - en ID - TAC_2015_30_a25 ER -
%0 Journal Article %A F. W. Lawvere %A M. Menni %T Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness %J Theory and applications of categories %D 2015 %P 909-932 %V 30 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/ %G en %F TAC_2015_30_a25
F. W. Lawvere; M. Menni. Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness. Theory and applications of categories, Tome 30 (2015), pp. 909-932. http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/