Internal choice holds in the discrete part of any cohesive topos satisfying stable connected codiscreteness
Theory and applications of categories, Tome 30 (2015), pp. 909-932.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce an apparent strengthening of Sufficient Cohesion that we call Stable Connected Codiscreteness (SCC) and show that if $p: E --> S$ is cohesive and satisfies SCC then the internal axiom of choice holds in $S$. Moreover, in this case, $p^!: S --> E$ is equivalent to the inclusion $E_{\neg\neg} --> E$.
Publié le :
Classification : 18B25, 03G30, 18F99
Keywords: Axiomatic cohesion, Topos theory
@article{TAC_2015_30_a25,
     author = {F. W. Lawvere and M. Menni},
     title = {Internal choice holds in the discrete part
of any cohesive topos satisfying stable connected codiscreteness},
     journal = {Theory and applications of categories},
     pages = {909--932},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/}
}
TY  - JOUR
AU  - F. W. Lawvere
AU  - M. Menni
TI  - Internal choice holds in the discrete part
of any cohesive topos satisfying stable connected codiscreteness
JO  - Theory and applications of categories
PY  - 2015
SP  - 909
EP  - 932
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/
LA  - en
ID  - TAC_2015_30_a25
ER  - 
%0 Journal Article
%A F. W. Lawvere
%A M. Menni
%T Internal choice holds in the discrete part
of any cohesive topos satisfying stable connected codiscreteness
%J Theory and applications of categories
%D 2015
%P 909-932
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/
%G en
%F TAC_2015_30_a25
F. W. Lawvere; M. Menni. Internal choice holds in the discrete part
of any cohesive topos satisfying stable connected codiscreteness. Theory and applications of categories, Tome 30 (2015), pp. 909-932. http://geodesic.mathdoc.fr/item/TAC_2015_30_a25/