Reflexivity and dualizability in categorified linear algebra
Theory and applications of categories, Tome 30 (2015), pp. 808-835.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The "linear dual" of a cocomplete linear category $C$ is the category of all cocontinuous linear functors $C \to Vect$. We study the questions of when a cocomplete linear category is reflexive (equivalent to its double dual) or dualizable (the pairing with its dual comes with a corresponding copairing). Our main results are that the category of comodules for a countable-dimensional coassociative coalgebra is always reflexive, but (without any dimension hypothesis) dualizable if and only if it has enough projectives, which rarely happens. Along the way, we prove that the category $QCoh(X)$ of quasi-coherent sheaves on a stack $X$ is not dualizable if $X$ is the classifying stack of a semisimple algebraic group in positive characteristic or if $X$ is a scheme containing a closed projective subscheme of positive dimension, but is dualizable if $X$ is the quotient of an affine scheme by a virtually linearly reductive group. Finally we prove tensoriality (a type of Tannakian duality) for affine ind-schemes with countable indexing poset.
Publié le :
Classification : 18A30, 18A35, 18A40, 14A15, 14R20
Keywords: locally presentable, dualizable, cocomplete, cocontinuous
@article{TAC_2015_30_a22,
     author = {Martin Brandenburg and Alexandru Chirvasitu and Theo Johnson-Freyd},
     title = {Reflexivity and dualizability in categorified linear algebra},
     journal = {Theory and applications of categories},
     pages = {808--835},
     publisher = {mathdoc},
     volume = {30},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2015_30_a22/}
}
TY  - JOUR
AU  - Martin Brandenburg
AU  - Alexandru Chirvasitu
AU  - Theo Johnson-Freyd
TI  - Reflexivity and dualizability in categorified linear algebra
JO  - Theory and applications of categories
PY  - 2015
SP  - 808
EP  - 835
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2015_30_a22/
LA  - en
ID  - TAC_2015_30_a22
ER  - 
%0 Journal Article
%A Martin Brandenburg
%A Alexandru Chirvasitu
%A Theo Johnson-Freyd
%T Reflexivity and dualizability in categorified linear algebra
%J Theory and applications of categories
%D 2015
%P 808-835
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2015_30_a22/
%G en
%F TAC_2015_30_a22
Martin Brandenburg; Alexandru Chirvasitu; Theo Johnson-Freyd. Reflexivity and dualizability in categorified linear algebra. Theory and applications of categories, Tome 30 (2015), pp. 808-835. http://geodesic.mathdoc.fr/item/TAC_2015_30_a22/